
www.manaraa.com

Evaluation of Parallel Raytracing Strategy Improvements by
Petri Nets

KOREČKO Štefan, SOBOTA Branislav, JANOŠO Radovan

Department of Computers and Informatics,
Technical University of Košice, Faculty of Electrical Engineering and Informatics,

Letná 9, 041 20 Košice, Slovakia, E-Mail: stefan.korecko@tuke.sk

Abstract –In this paper we deal with an evaluation of
possible improvements of a parallel raytracing
implementation, developed at the home institution of
authors. The improvements focus on a reduction of
delays caused by a communication between
computational nodes. The evaluation is performed by
simulation-based performance analysis using timed
Coloured Petri nets (CPN) and CPN tools. We present
a CPN model of our implementation and results from
an analysis of proposed improvements.

Keywords: simulation, coloured petri nets, parallel

computing, raytracing.

I. INTRODUCTION

Photorealistic imaging makes it possible to display
3D scenes with a high degree of realism. Techniques
used in the photorealistic imaging allow to compute
resulting picture following the descriptions of the
environment and scene optical properties [3]. These
techniques simulate the real optical effects, such as light
reflection, refraction and diffusion. There are two
methods of the photorealistic imaging:
• raytracing - this method is based on the tracing of

every beam of light from an observer’s position to
the 3D scene trough a projection plane. In this case
a computer display defines the projection plane.

• radiosity - this method computes the resulting scene
image with respect to energy relationships inside
the 3D scene.

Both methods are very time-consuming. To reduce
the time needed in an extensive way a parallel raytracing
computation is used. [10]. The parallelism is possible at
the process or processor level. For parallel
implementation we can use multicomputer (e.g. grid,
cluster) or multiprocessor computer architecture (e.g.
GPGPU technology) [9][12]. Because the raytracing is a
recursive algorithm, the synchronisation and
management of the distributed processes is relatively
difficult [11]. In this case we have to solve problems of
the communication and management between
computation nodes. The management methods can be
centralised or decentralised, deterministic or stochastic.
They differ in dependency throughput on load, number
of nodes, output resolution, realisation difficulty and
scene complexity [2][3][4].

There are two principal methods of decomposing a
raytracing computation: demand-driven and data-driven
(or data-parallel), and there are research activities
focused on developing a hybrid model trying to combine
the best features of both methods [10]. Demand-driven
parallel raytracing computes the final product of a
raytracer as an image of m×n pixels, and since each
pixel is computed independently, the most obvious way
of decomposition is to divide the image into p parts,
where p is a number of computational nodes available.
Then each node will compute m×n/p pixels and, ideally,
the computation would be p-times faster. A number of
jobs are created, each containing different subset of
image pixels and these jobs are assigned to
computational nodes. Input scene is copied to local
memory of each computational node. Nodes render their
parts, return computed pixels, get another job if there is
any, and in the end the final image is composed from
these parts.

Data-driven parallel raytracing splits the input scene
into a number of sections (tiles) and assigns these
sections to processors. Each computational node is
responsible for all computations associated with objects
in this particular section, no matter where the ray comes
from. Only rays passing through the node's section are
traced. If a ray spawned at one node needs data from
another node, it is transferred to that processor. The way
the scene is divided into sections determines the
efficiency of parallel computation. Determining the
number of rays that will pass through a section of the
scene in order to estimate the sections requiring the most
processing is one of the hardest problems to overcome.
Using the cost function can be helpful.

Our solution [12] implements the demand-driven

model and uses a multicomputer (cluster) environment.
It has a hierarchical structure, but it isn't a typical
master/slave scenario. All nodes are equal, with the
exception of the root (master) node. Master also controls
the whole operation, allocates jobs and interacts with the
user. That allows us to utilize massive parallelism. For
load balancing, static or dynamic load balancing by
tiling decomposition seems to be the best choice. Main
benefits of this approach are easy decomposition and
implementation, simple job distribution and control and
the fact that a general raytracing algorithm remains
unchanged and it scales well. The main disadvantage is

Volume 3, Number 1, 2010

87

www.manaraa.com

that the input scene has to be copied to local memory of
each computational node, which poses a problem if the
scene is very large.

In short, the raytracing in our implementation
proceeds as follows: First the master node sends a 3D
scene data to each slave node. Then the master divides
the image plane into rectangular tiles and orders each
node to process (raytrace) a tile. The master itself also
raytraces a tile, but the raytracing job has a lower
priority than a communication with slave nodes. When a
slave node finishes tile raytracing, it notifies the master.
Then the master downloads the raytraced tile and orders
the slave to process another one. After processing of all
tiles the master assembles the final image.

The implementation is quite satisfactory for a small
number of nodes, but it showed up that it will be
ineffective to use more than 10-11 nodes. This is, among
others, caused by a different complexity of individual
tiles and the communication delay.

In the rest of this paper we deal with improvements

aimed at reducing the communication delay and their
evaluation using simulation-based performance analysis.
We present a timed Coloured Petri net model of our
implementation and results from an analysis of proposed
improvements.

II. CPN MODEL OF PARALLEL RAYTRACING
IMLEMENTATION

Because it is a time and money consuming process to

test intended improvements using real software and
hardware, we decided to use an appropriate Petri net
model instead. Petri nets are a well-known formalism,
are able to express non-determinism and concurrency,
and have been used in a wide variety of areas including
classic ones, such as verification of network protocols or
not so typical ones, such as e-learning [6]. There are also
Petri nets dialects suitable for discrete-event simulation.
We chose timed Coloured Petri nets (CPN) [1], [7] that
combine a sufficient modelling power, probability
functions and time concept. Its supporting tool, called
CPN tools [1], is available for free and provides
facilities for collecting and basic processing of
simulation data. Because of space limitations we
excluded a description of CPN from this paper. Reader
can find basic information about CPN and CPN tools in
[7], at [1] or in a short form in [8].

Figure 1 shows a timed CPN model used to evaluate

possible improvements of our current implementation of
parallel raytracing. The model is a further development
of a basic model, introduced in [8]. The model
incorporates the whole raytracing process with a special
emphasis to communication between master and slave
nodes. To achieve an adequate precision the time in our
model is measured in milliseconds.

The net begins its lifecycle in the initial marking
with tokens in places scStartTime, newScene,
commTime, tilesDist and freeNodes. The place

newScene holds one token with randomly chosen value
from interval 10000 to 70000 (computed by the function
discrete). This value characterizes a complexity of a
scene to be raytraced and its range is based on our
practical experience. In general the scene complexity
depends on its size, number of objects, objects
complexity (number of polygons), objects material
(opacity, mirrors,…), illumination model and camera
parameters. The number of all computers (nodes) used is
given by the constant ndNo and the place freeNodes
holds one token for each node, where its value
designates a type of the node. Albeit all the nodes are
equal we have to distinguish between the slave (client)
nodes (type 2) and the master node (type 1) that also
manages the whole process. About 4% of master
performance is reserved for the management. The
tilesDist holds one token with an uninitialized tiles
distribution structure, created by the function
emptyTDist. Token from commTime is used in the
process of sending a raytraced tile back to the master
node.

There is only one transition that can be fired in the

initial marking in time=0 - sendScene. Its firing
represents a sending of the whole scene to each slave
node. Sending of the scene is a sequential process and its
duration is computed by the function sendTm

sendTm(ndNo)=(ndNo -1)*rnNormal_int(20000,10000)

where the function rnNormal_int(m,v) returns a value
from exponential random distribution with mean m and
variance v. The firing also saves the starting time point
of scene raytracing as a token in scStartTime and
initializes the structure in tilesDist with information
about scene partitioning (number, dimensions and
overall complexity of tiles to be raytraced).

A firing of the transition selectNewTile means an

assignment of a raytracing job to a free node nt. Of
course, selectNewTile, can be fired only if there is some
unprocessed tile of the scene (i.e. if the field remTiles of
the structure in tilesDist is greater than 0). A tile to be
raytraced is generated from the scene partitioning
structure td by the function getTile and is sent to the
place prepTile. To store information about the tile the
colour set TILE is used (Fig. 2), where fields wdt and hgt
store tile dimensions, complxt stores tile complexity,
cSuc determines whether the tile raytracing will be
successful, nTyp is a type of node where the tile will be
raytraced and cTm is a time needed to return the tile to
the master node after raytracing (a part of the
communication delay). Tile dimensions and complexity
are set by getTile. The tile complexity is selected
randomly from an overall scene complexity using
normal distribution. Fields cSuc and nTyp are set by the
functions setSuc_nTp and success (Fig. 3), where a
uniform random distribution is used to determine a
raytracing job success. In our model we assume that

Journal of Computer Science and Control Systems

88

www.manaraa.com

Fig. 1. CPN model of parallel raytracing implementation.

colset TILE = record

 wdt:INT *
 hgt:INT *
 complxt:INT *
 cSuc: BOOL*
 nTyp:INT*
 cTm:INT;

colset TILEtm = TILE timed;

Fig. 2. Declarations of some colour sets.

90% of all jobs on slave nodes will be successful and
that the master node never fails. The firing of
selectNewTile also updates the structure in tilesDist by
decreasing the field remTiles and the overall complexity
of remaining tiles. A presence of token in masterRend
indicates that the master node has a raytracing job
assigned, so the firing adds a token to masterRend when
nt=1.

If the field cSuc of the generated tile t is true (i.e.
[#cSuc t]), then a firing of sucRtrStart moves t to
raytrTiles. The timestamp of t is also increased by

Volume 3, Number 1, 2010

89

www.manaraa.com

raytracing time and a communication delay is set to its
field cTm. The raytracing time of the tile is computed by
raytrTm from all fields of t except cSuc and cTm. The
communication delay, computed by setCmTm, is derived
from an actual network speed, hard disk speed of the
master and size of t.

fun setSuc_nTp(t:TILE,rate,1) =

 {wdt=(#wdt t),
 hgt= (#hgt t),
 complxt= (#complxt t),
 cSuc = true,
 nTyp=1,
 cTm=(#cTm t)}

|setSuc_nTp(t:TILE,rate,nt) =
 {wdt=(#wdt t),
 hgt= (#hgt t),
 complxt= (#complxt t),
 cSuc = success(rate),
 nTyp=nt,
 cTm=(#cTm t)}

fun success(rate)=
 let val rn = uniform(0.0,1.0)

 in
 if(rn<=rate) then true
 else false
 end;

Fig. 3. Definition of functions setSuc_nTp and success.

After raytracing on a slave node the tile t is sent to

the master. This is modelled by a firing of
sendTileSl_Mf or sendTileSl_Mr.

The transition sendTileSl_Mf is used if the master
doesn't perform a raytracing job when the tile is about to
be sent. In this case the master node is removed from
free nodes and t moves to commTileSl_Mf, where it
waits for the communication delay time. Then a firing
of freeSlNode_Mf moves the tile into already computed
ones (place computedTiles) and frees the master and the
node used for raytracing of t.

If the master is already performing a raytracing job,
sendTileSl_Mr is used instead. The situation is similar to
the previous case but, in addition, the communication
delay of t is added to the value of token in commTime.
The transitions involved also change the marking of
masterRend to simulate that the raytracing on the master
is interrupted when a communication with a slave occurs
(because of a higher priority of the communication).

After raytracing on the master node there is no need
to send t anywhere (except of the place computedTiles).
However, in this case we have to take into account that
the raytracing can be often interrupted due to
communication with slaves. This is modelled by firing
of delayRendMr, which adds a communication delay,
accumulated during raytracing on the master in the place
commTime, to the timestamp of t and returns it to
raytrTiles. If there is no delay, freeMrNode finishes the
raytracing job on the master.

The path of an unsuccessful tile begins with a firing
of unsucRtrStart, which moves t to unscRaytrTiles. The
delay computed by fChckTm is a time needed to detect
that a given node failed and is not responding. The
response of nodes is checked regularly in our
implementation, so the delay computed is a randomly
chosen multiple of checking period with some upper
limit. Next, a firing of returnTile moves t to the place
returnedTiles and the failed node to failedNodes, where
it waits for recovery. We optimistically suppose that
each node recovers within one day. Finally the node is
returned to freeNodes by a firing of recoverNode and a
raytracing of the tile t starts again by a firing of
selectRetTile.

After successful processing of all tiles the final
image can be assembled and the transition
completeScene fired. Its firing removes all tokens from
computedTiles and generates a new one in newScene, so
a raytracing process can start over again. There is a data
collecting monitor associated with firing of
completeScene, which saves information about
raytracing duration and number of used nodes into the
text file for further processing.

III. EVALUATION OF MASTER/SLAVE
BUFFERING USING SIMULATION

As it was mentioned earlier, one of possible

improvements of our current parallel raytracing solution
is to reduce the communication delay. This can be done
by adding some memory buffers to the master or slave
nodes. We decided to deal with a buffer on the master
first, because it is easier to implement and we don't need
to consider a risk of losing computed data, which is not
the case when we have buffers on the slaves.

In general, use of a memory buffer on the master
reduces the communication delay by approximately the
time needed to save a raytraced tile to hard disk of the
master node. To determine whether an implementation
of master node buffer will be of any advantage, we
performed a simulation experiment comparing time of a
scene raytracing with and without the master hard disk
saving time in the communication delay. The
experiment was conducted on a slightly modified
version of the model introduced in section II. The
modifications reduced side effects by making all nodes
equal (the master can use all of its performance for
raytracing) and by ensuring that no computation fails
(each tile has cSuc=true). They also guarantee that in
both cases the same tiles (with same dimensions and tile
complexity) are processed in the same order. In addition,
we changed the place computedTiles from the collector
of raytraced tiles to their counter. This change reduced
the simulation time significantly. The model used for the
simulation experiment is shown in Fig. 4 and it can be
divided into 3 parts. The upper part simulates the
raytracing with the buffer the bottom part simulates the
raytracing without the buffer and the middle part deals
with synchronized tile production and distribution.

Journal of Computer Science and Control Systems

90

www.manaraa.com

Fig. 4. Timed CPN model used for simulation experiments.

In the experiments we fixed the scene complexity to
36500 and used two different scenes
• a big scene, SC.1, with 30000×22500 pixels and
• a smaller one, SC.2, with 10000×7500 pixels.
Tile dimensions were 30000×10 pixels for SC.1 and
10000×10 pixels for SC.2. Network speed was set to
100Mbps and hard disk speed of the master to 300Mbps,
according to the SATA2 specification. Number of the
nodes varied from 3 to 16. The results, which are
averages from 100 multiple simulation runs, can be seen
in Table 1 and figures 5, 6. As it is clear from the results,
use of the memory buffer on the master doesn’t bring

the desired improvement. It saves only a few seconds
from the processing that takes a lot of hours. In some
cases the raytracing duration with the buffer was even
longer than without it. Our simulation experiments with
buffers on the slave nodes showed similar results.

TABLE 1. Time saved by elimination of the hard disk saving
time (in seconds) compared with scene raytracing duration (in
hours)

SC.1 raytracing SC.2 raytracing no-
des duration (h) saved (s) duration (h) saved (s)
3 228,8 7,6 25,5 2,6
4 171,9 16,3 19,2 1,9
5 137,7 32,8 15,4 3,3
6 114,9 29,5 12,9 3,3
8 98,8 7,6 11,2 1
7 86,6 7 9,8 1,6
9 77 27,24 8,8 0,8
10 69,4 34,4 7,9 1,4
11 63,3 2,1 7,3 0,4
12 58,1 2,5 6,7 0,4
13 53,8 3,7 6,2 0,9
14 49,9 2,2 5,8 0,6
15 46,7 46 5,5 2,6
16 43,9 3 5,1 0,5

228,8

171,9

137,7

114,9
98,8

86,6
77 69,4 63,3 58,1 53,8 49,9 46,7 43,9

7,6 16,3
32,8 29,5

7,6 7
27,24 34,4

2,1 2,5 3,7 2,2

46

30

50

100

150

200

250

3 4 5 6 8 7 9 10 11 12 13 14 15 16
Nodes

tim
e

Duration (h) Saving (s)

Fig. 5. Results of parallel raytracing simulation for SC1.

25,5

19,2

15,4

12,9
11,2

9,8
8,8 7,9 7,3 6,7 6,2 5,8 5,5 5,1

2,6 1,9
3,3 3,3

1 1,6 0,8 1,4
0,4 0,4 0,9 0,6

2,6
0,50

5

10

15

20

25

30

3 4 5 6 8 7 9 10 11 12 13 14 15 16

Nodes

tim
e

Duration (h) Saving (s)

Fig. 6. Results of parallel raytracing simulation for SC2.

IV. CONCLUSIONS

Albeit we have to conclude that some of the intended

improvements turned out to be unsatisfactory, it is
needed to say that the use of discrete event simulation of

Volume 3, Number 1, 2010

91

www.manaraa.com

the CPN model instead of experiments on real hardware
and software saved us a lot of time and money.

It should be also mentioned that to verify functional
properties of the CPN model we also designed similar
low-level Petri net model (PT net), where we used place
invariants to check that a model has desired properties.
In addition, we used our own tools and results [5] to
transform the PT net model to the language of B-
Method, where additional properties, such as deadlock
freedom, has been verified.

Our future research will focus on the inefficiency
caused by a different complexity of individual tiles,
namely on the development of a method to estimate the
tile complexity in a time-effective manner. Here we
proposed an approach that uses the raytracing of the tile
with a recursion depth 1 and very low resolution
(approx. 32x32 pixels). We also intend to move our
raytracing implementation from the cluster environment
to a graphic card with GPGPU functionality.

ACKNOWLEDGMENTS

This work is supported by VEGA grant project
No. 1/0646/09: “Tasks solution for large graphical data
processing in the environment of parallel, distributed
and network computer systems”

REFERENCES

[1] CPN tools homepage, http://wiki.daimi.au.dk/cpntools.
[2] A. Dietrich, E. Gobbetti, S.-E. Yoon, ″Massive-Model

Rendering Techniques: A Tutorial″, IEEE Computer
Graphics and Applications, vol. 27, no. 6, pp. 20-34, 2007.

[3] I. Georgiev, P. Slusallek, RTfact: ″Generic Concepts for
Flexible and High Performance Ray Tracing″, Proceedings
of the IEEE/EG Symposium on Interactive Ray Tracing
2008, Los Angeles, USA, pp. 115-122, 2008.

[4] A. Heirich, J. Arvo, ″A competitive analysis of load
balancing strategies for parallel ray tracing″, The Journal
of Supercomputing, vol. 12, no. 1-2, pp. 57-68, 1998.

[5] Š. Hudák, Š. Korečko, S. Šimoňák, ″A Support Tool for
the Reachability and Other Petri Nets-Related Problems
and Formal Design and Analysis of Discrete Systems″,
Problems in Programming, vol. 20, no. 2-3, pp. 613-621,
2008.

[6] H. Indzhov, D. Blagoev, G. Totkov, “Executable Petri
Nets: Towards Modelling and Management of e-Learning
Processes”, International Conference on Computer
Systems and Technologies - CompSysTech’09, Ruse,
Bulgaria, 2009.

[7] K. Jensen, L.M. Kristensen, L. Wells, ″Coloured Petri
Nets and CPN Tools for Modelling and Validation of
Concurrent Systems″, International Journal on Software
Tools for Technology Transfer, vol. 9, no. 3-4 pp. 213-
254, 2007.

[8] Š. Korečko, B. Sobota, ″Using coloured petri nets for
design of parallel raytracing environment″, Acta
Universitatis Sapientiae Informatica, Romania, 2010, in
press.

[9] O. Látka, B. Madoš, J. Perháč, A. Kleinová: Parallel
system module for prepare photorealistic rendering in grid
and cluster, 6th International Symposium on Applied
Machine Intelligence and Informatics SAMI 2008, january
21-22, 2008, Herľany, Slovakia. - Budapest : Budapest
Tech, 2008, pp. 317-320, ISBN 978-1-4244-2106-0.

[10] I. Notkin, C. Gotsman, ″Parallel Progressive Ray-
Tracing″, Computer Graphics Forum, vol. 16, no. 1, pp.
43-55, 1997.

[11] M. Paralič, M. Krokavec, M. Tomášek: Perspective
Methods and Tools for the Design of Distributed Software
Systems, Computer Science and Technology Research
Survey, Košice, Elfa s.r.o., 2007, 1, pp. 16-19, 978-80-
8086-046-2

[12] B. Sobota, J. Perháč, Cs. Szabó, Š. Schrötter: High-
resolution visualisation in cluster environment, Grid
Computing for Complex Problem – GCCP 2008,
Bratislava, 27.10.-29.10.2008, Bratislava, Slovakia,,
Institute of Informatics of Slovak Academy of Sciences
(SAS), 2008, pp. 62 - 69, ISBN 978-80-969202-9-7

Journal of Computer Science and Control Systems

92

http://opac.lib.tuke.sk/tukeopacUNI?fn=*autorform&backPage=recview&authorName=L%C3%A1tka,%20Ondrej&fs=78E908CD5D9F4CE98760BABDD3DBD350
http://opac.lib.tuke.sk/tukeopacUNI?fn=*autorform&backPage=recview&authorName=Mado%C5%A1,%20Branislav&fs=78E908CD5D9F4CE98760BABDD3DBD350
http://opac.lib.tuke.sk/tukeopacUNI?fn=*autorform&backPage=recview&authorName=Perh%C3%A1%C4%8D,%20J%C3%A1n&fs=78E908CD5D9F4CE98760BABDD3DBD350
http://opac.lib.tuke.sk/tukeopacUNI?fn=*autorform&backPage=recview&authorName=Kleinov%C3%A1,%20Al%C5%BEbeta&fs=78E908CD5D9F4CE98760BABDD3DBD350

www.manaraa.com

Copyright of Journal of Computer Science & Control Systems is the property of Journal of Computer Science &

Control Systems and its content may not be copied or emailed to multiple sites or posted to a listserv without

the copyright holder's express written permission. However, users may print, download, or email articles for

individual use.

