
www.manaraa.com

Evaluation of Parallel Raytracing Strategy Improvements by 
Petri Nets 

 
KOREČKO Štefan, SOBOTA Branislav, JANOŠO Radovan  

Department of Computers and Informatics, 
Technical University of Košice, Faculty of Electrical Engineering and Informatics, 

Letná 9, 041 20 Košice, Slovakia, E-Mail: stefan.korecko@tuke.sk 
 
 

Abstract –In this paper we deal with an evaluation of 
possible improvements of a parallel raytracing 
implementation, developed at the home institution of 
authors. The improvements focus on a reduction of 
delays caused by a communication between 
computational nodes. The evaluation is performed by 
simulation-based performance analysis using timed 
Coloured Petri nets (CPN) and CPN tools. We present 
a CPN  model of our implementation and results from 
an analysis of proposed improvements. 
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I. INTRODUCTION 
 

Photorealistic imaging makes it possible to display 
3D scenes with a high degree of realism. Techniques 
used in the photorealistic imaging allow to compute 
resulting picture following the descriptions of the 
environment and scene optical properties [3]. These 
techniques simulate the real optical effects, such as light 
reflection, refraction and diffusion. There are two 
methods of the photorealistic imaging: 
• raytracing - this method is based on the tracing of 

every beam of light from an observer’s position to 
the 3D scene trough a projection plane. In this case 
a computer display defines the projection plane. 

• radiosity - this method computes the resulting scene 
image with respect to energy relationships inside 
the 3D scene. 

Both methods are very time-consuming. To reduce 
the time needed in an extensive way a parallel raytracing 
computation is used. [10]. The parallelism is possible at 
the process or processor level. For parallel 
implementation we can use multicomputer (e.g. grid, 
cluster) or multiprocessor computer architecture (e.g. 
GPGPU technology) [9][12]. Because the raytracing is a 
recursive algorithm, the synchronisation and 
management of the distributed processes is relatively 
difficult [11]. In this case we have to solve problems of 
the communication and management between 
computation nodes. The management methods can be 
centralised or decentralised, deterministic or stochastic. 
They differ in dependency throughput on load, number 
of nodes, output resolution, realisation difficulty  and 
scene complexity [2][3][4]. 

There are two principal methods of decomposing a 
raytracing computation: demand-driven and data-driven 
(or data-parallel), and there are research activities 
focused on developing a hybrid model trying to combine 
the best features of both methods [10].  Demand-driven 
parallel raytracing computes the final product of a 
raytracer as an image of m×n pixels, and since each 
pixel is computed independently, the most obvious way 
of decomposition is to divide the image into p parts, 
where p is a number of computational nodes available. 
Then each node will compute m×n/p pixels and, ideally, 
the computation would be p-times faster. A number of 
jobs are created, each containing different subset of 
image pixels and these jobs are assigned to 
computational nodes. Input scene is copied to local 
memory of each computational node. Nodes render their 
parts, return computed pixels, get another job if there is 
any, and in the end the final image is composed from 
these parts. 

Data-driven parallel raytracing splits the input scene 
into a number of sections (tiles) and assigns these 
sections to processors. Each computational node is 
responsible for all computations associated with objects 
in this particular section, no matter where the ray comes 
from. Only rays passing through the node's section are 
traced. If a ray spawned at one node needs data from 
another node, it is transferred to that processor. The way 
the scene is divided into sections determines the 
efficiency of parallel computation. Determining the 
number of rays that will pass through a section of the 
scene in order to estimate the sections requiring the most 
processing is one of the hardest problems to overcome. 
Using the cost function can be helpful. 

 
Our solution [12] implements the demand-driven 

model and uses a multicomputer (cluster) environment. 
It has a hierarchical structure, but it isn't a typical 
master/slave scenario. All nodes are equal, with the 
exception of the root (master) node. Master also controls 
the whole operation, allocates jobs and interacts with the 
user. That allows us to utilize massive parallelism. For 
load balancing, static or dynamic load balancing by 
tiling decomposition seems to be the best choice. Main 
benefits of this approach are easy decomposition and 
implementation, simple job distribution and control and 
the fact that a general raytracing algorithm remains 
unchanged and it scales well. The main disadvantage is 
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that the input scene has to be copied to local memory of 
each computational node, which poses a problem if the 
scene is very large.  

In short, the raytracing in our implementation 
proceeds as follows: First the master node sends a 3D 
scene data to each slave node. Then the master divides 
the image plane into rectangular tiles and orders each 
node to process (raytrace) a tile. The master itself also 
raytraces a tile, but the raytracing job has a lower 
priority than a communication with slave nodes. When a 
slave node finishes tile raytracing, it notifies the master. 
Then the master downloads the raytraced tile and orders 
the slave to process another one. After processing of all 
tiles the master assembles the final image.  

The implementation is quite satisfactory for a small 
number of nodes, but it showed up that it will be 
ineffective to use more than 10-11 nodes. This is, among 
others, caused by a different complexity of individual 
tiles and the communication delay. 

 
In the rest of this paper we deal with improvements 

aimed at reducing the communication delay and their 
evaluation using simulation-based performance analysis. 
We present a timed Coloured Petri net model of our 
implementation and results from an analysis of proposed 
improvements. 
 

II. CPN MODEL OF PARALLEL RAYTRACING 
IMLEMENTATION 

 
Because it is a time and money consuming process to 

test intended improvements using real software and 
hardware, we decided to use an appropriate Petri net 
model instead. Petri nets are a well-known formalism, 
are able to express non-determinism and concurrency, 
and have been used in a wide variety of areas including 
classic ones, such as verification of network protocols or 
not so typical ones, such as e-learning [6]. There are also 
Petri nets dialects suitable for discrete-event simulation. 
We chose timed Coloured Petri nets (CPN) [1], [7] that 
combine a sufficient modelling power, probability 
functions and time concept. Its supporting tool, called 
CPN tools [1], is available for free and provides 
facilities for collecting and basic processing of 
simulation data. Because of space limitations we 
excluded a description of CPN from this paper. Reader 
can find basic information about CPN and CPN tools in 
[7], at [1] or in a short form in [8]. 

 
Figure 1 shows a timed CPN model used to evaluate 

possible improvements of our current implementation of 
parallel raytracing. The model is a further development 
of a basic model, introduced in [8]. The model 
incorporates the whole raytracing process with a special 
emphasis to communication between master and slave 
nodes. To achieve an adequate precision the time in our 
model is measured in milliseconds. 

The net begins its lifecycle in the initial marking 
with tokens in places scStartTime, newScene, 
commTime, tilesDist and freeNodes. The place 

newScene holds one token with randomly chosen value 
from interval 10000 to 70000 (computed by the function 
discrete). This value characterizes a complexity of a 
scene to be raytraced and its range is based on our 
practical experience. In general the scene complexity 
depends on its size, number of objects, objects 
complexity (number of polygons), objects material 
(opacity, mirrors,…), illumination model and camera 
parameters. The number of all computers (nodes) used is 
given by the constant ndNo and the place freeNodes 
holds one token for each node, where its value 
designates a type of the node. Albeit all the nodes are 
equal we have to distinguish between the slave (client) 
nodes (type 2) and the master node (type 1) that also 
manages the whole process. About 4% of master 
performance is reserved for the management. The 
tilesDist holds one token with an uninitialized tiles 
distribution structure, created by the function 
emptyTDist. Token from commTime is used in the 
process of sending a raytraced tile back to the master 
node. 

 
There is only one transition that can be fired in the 

initial marking in time=0 - sendScene. Its firing 
represents a sending of the whole scene to each slave 
node. Sending of the scene is a sequential process and its 
duration is computed by the function sendTm 

 
sendTm(ndNo)=(ndNo -1)*rnNormal_int(20000,10000) 

 
where the function rnNormal_int(m,v) returns a value 
from exponential random distribution with mean m and 
variance v. The firing also saves the starting time point 
of scene raytracing as a token in scStartTime and 
initializes the structure in tilesDist with information 
about scene partitioning (number, dimensions and 
overall complexity of tiles to be raytraced). 

 
A firing of the transition selectNewTile means an 

assignment of a raytracing job to a free node nt. Of 
course, selectNewTile, can be fired only if there is some 
unprocessed tile of the scene (i.e. if the field remTiles of 
the structure in tilesDist is greater than 0). A tile to be 
raytraced is generated from the scene partitioning 
structure td by the function getTile and is sent to the 
place prepTile. To store information about the tile the 
colour set TILE is used (Fig. 2), where fields wdt and hgt 
store tile dimensions, complxt stores tile complexity, 
cSuc determines whether the tile raytracing will be 
successful, nTyp is a type of node where the tile will be 
raytraced and cTm is a time needed to return the tile to 
the master node after raytracing (a part of the 
communication delay). Tile dimensions and complexity 
are set by getTile. The tile complexity is selected 
randomly from an overall scene complexity using 
normal distribution. Fields cSuc and nTyp are set by the 
functions setSuc_nTp and success (Fig. 3), where a 
uniform random distribution is used to determine a 
raytracing job success. In our model we assume that 
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Fig. 1. CPN model of parallel raytracing implementation. 
 
colset TILE = record  

    wdt:INT *  
    hgt:INT * 
    complxt:INT *  
    cSuc: BOOL*  
    nTyp:INT*  
    cTm:INT; 
 

colset TILEtm = TILE timed; 

 
Fig. 2. Declarations of some colour sets. 

90% of all jobs on slave nodes will be successful and 
that the master node never fails. The firing of 
selectNewTile also updates the structure in tilesDist by 
decreasing the field remTiles and the overall complexity 
of remaining tiles. A presence of token in masterRend 
indicates that the master node has a raytracing job 
assigned, so the firing adds a token to masterRend when 
nt=1. 

If the field cSuc of the generated tile t is true (i.e. 
[#cSuc t]), then a firing of sucRtrStart moves t to 
raytrTiles. The timestamp of t is also increased by 
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raytracing time and a communication delay is set to its 
field cTm. The raytracing time of the tile is computed by 
raytrTm from all fields of t except cSuc and cTm. The 
communication delay, computed by setCmTm, is derived 
from an actual network speed, hard disk speed of the 
master and size of t.  

 
fun setSuc_nTp(t:TILE,rate,1) = 

   {wdt=(#wdt t),  
    hgt= (#hgt t), 
    complxt= (#complxt t),  
    cSuc = true, 
    nTyp=1, 
    cTm=(#cTm t)} 
  
|setSuc_nTp(t:TILE,rate,nt) = 
   {wdt=(#wdt t),  
    hgt= (#hgt t), 
    complxt= (#complxt t), 
    cSuc = success(rate),  
    nTyp=nt, 
    cTm=(#cTm t)}  
  
 

fun success(rate)= 
    let  val rn = uniform(0.0,1.0) 

       in   
         if(rn<=rate) then true  
         else false  
       end; 

 
Fig. 3. Definition of functions setSuc_nTp and success. 
 
After raytracing on a slave node the tile t is sent to 

the master. This is modelled by a firing of 
sendTileSl_Mf or sendTileSl_Mr.  

The transition sendTileSl_Mf is used if the master 
doesn't perform a raytracing job when the tile is about to 
be sent. In this case the master node is removed from 
free nodes and t moves to commTileSl_Mf, where it 
waits for the communication delay time.  Then a firing 
of freeSlNode_Mf moves the tile into already computed 
ones (place computedTiles) and frees the master and the 
node used for raytracing of t. 

If the master is already performing a raytracing job, 
sendTileSl_Mr is used instead. The situation is similar to 
the previous case but, in addition, the communication 
delay of t is added to the value of token in commTime.  
The transitions involved also change the marking of 
masterRend to simulate that the raytracing on the master 
is interrupted when a communication with a slave occurs 
(because of a higher priority of the communication). 

After raytracing on the master node there is no need 
to send t anywhere (except of the place computedTiles). 
However, in this case we have to take into account that 
the raytracing can be often interrupted due to 
communication with slaves. This is modelled by firing 
of delayRendMr, which adds a communication delay, 
accumulated during raytracing on the master in the place 
commTime, to the timestamp of t and returns it to 
raytrTiles. If there is no delay, freeMrNode finishes the 
raytracing job on the master. 

The path of an unsuccessful tile begins with a firing 
of unsucRtrStart, which moves t to unscRaytrTiles. The 
delay computed by fChckTm is a time needed to detect 
that a given node failed and is not responding. The 
response of nodes is checked regularly in our 
implementation, so the delay computed is a randomly 
chosen multiple of checking period with some upper 
limit. Next, a firing of returnTile moves t to the place 
returnedTiles and the failed node to failedNodes, where 
it waits for recovery. We optimistically suppose that 
each node recovers within one day. Finally the node is 
returned to freeNodes by a firing of recoverNode and a 
raytracing of the tile t starts again by a firing of 
selectRetTile. 

After successful processing of all tiles the final 
image can be assembled and the transition 
completeScene fired. Its firing removes all tokens from 
computedTiles and generates a new one in newScene, so 
a raytracing process can start over again. There is a data 
collecting monitor associated with firing of 
completeScene, which saves information about 
raytracing duration and number of used nodes into the 
text file for further processing. 
 

III. EVALUATION OF MASTER/SLAVE 
BUFFERING USING SIMULATION 

 
As it was mentioned earlier, one of possible 

improvements of our current parallel raytracing solution 
is to reduce the communication delay. This can be done 
by adding some memory buffers to the master or slave 
nodes. We decided to deal with a buffer on the master 
first, because it is easier to implement and we don't need 
to consider a risk of losing computed data, which is not 
the case when we have buffers on the slaves.  

In general, use of a memory buffer on the master 
reduces the communication delay by approximately the 
time needed to save a raytraced tile to hard disk of the 
master node. To determine whether an implementation 
of master node buffer will be of any advantage, we 
performed a simulation experiment comparing time of a 
scene raytracing with and without the master hard disk 
saving time in the communication delay. The 
experiment was conducted on a slightly modified 
version of the model introduced in section II. The 
modifications reduced side effects by making all nodes 
equal (the master can use all of its performance for 
raytracing) and by ensuring that no computation fails 
(each tile has cSuc=true). They also guarantee that in 
both cases the same tiles (with same dimensions and tile 
complexity) are processed in the same order. In addition, 
we changed the place computedTiles from the collector 
of raytraced tiles to their counter. This change reduced 
the simulation time significantly. The model used for the 
simulation experiment is shown in Fig. 4 and it can be 
divided into 3 parts. The upper part simulates the 
raytracing with the buffer the bottom part simulates the 
raytracing without the buffer and the middle part deals 
with synchronized tile production and distribution. 
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Fig. 4. Timed CPN model used for simulation experiments. 
 

In the experiments we fixed the scene complexity to 
36500 and used two different scenes 
• a big scene, SC.1, with 30000×22500 pixels and  
• a smaller one, SC.2, with 10000×7500 pixels.  
Tile dimensions were 30000×10 pixels for SC.1 and 
10000×10 pixels for SC.2. Network speed was set to 
100Mbps and hard disk speed of the master to 300Mbps, 
according to the SATA2 specification. Number of the 
nodes varied from 3 to 16. The results, which are 
averages from 100 multiple simulation runs, can be seen 
in Table 1 and figures 5, 6. As it is clear from the results, 
use of the memory buffer on the master doesn’t bring 

the desired improvement. It saves only a few seconds 
from the processing that takes a lot of hours. In some 
cases the raytracing duration with the buffer was even 
longer than without it. Our simulation experiments with 
buffers on the slave nodes showed similar results. 

 
TABLE 1. Time saved by elimination of the hard disk saving 
time (in seconds) compared with scene raytracing duration (in 
hours) 
 

SC.1 raytracing SC.2 raytracing no-
des duration (h) saved (s) duration (h) saved (s) 
3 228,8 7,6 25,5 2,6 
4 171,9 16,3 19,2 1,9 
5 137,7 32,8 15,4 3,3 
6 114,9 29,5 12,9 3,3 
8 98,8 7,6 11,2 1 
7 86,6 7 9,8 1,6 
9 77 27,24 8,8 0,8 
10 69,4 34,4 7,9 1,4 
11 63,3 2,1 7,3 0,4 
12 58,1 2,5 6,7 0,4 
13 53,8 3,7 6,2 0,9 
14 49,9 2,2 5,8 0,6 
15 46,7 46 5,5 2,6 
16 43,9 3 5,1 0,5 
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Fig. 5. Results of parallel raytracing simulation for  SC1. 
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Fig. 6. Results of parallel raytracing simulation for  SC2. 

 
IV. CONCLUSIONS 

 
Albeit we have to conclude that some of the intended 

improvements turned out to be unsatisfactory, it is 
needed to say that the use of discrete event simulation of 
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the CPN model instead of experiments on real hardware 
and software saved us a lot of time and money. 

It should be also mentioned that to verify functional 
properties of the CPN model we also designed similar 
low-level Petri net model (PT net), where we used place 
invariants to check that a model has desired properties. 
In addition, we used our own tools and results [5] to 
transform the PT net model to the language of B-
Method, where additional properties, such as deadlock 
freedom, has been verified. 

Our future research will focus on the inefficiency 
caused by a different complexity of individual tiles, 
namely on the development of a method to estimate the 
tile complexity in a time-effective manner. Here we 
proposed an approach that uses the raytracing of the tile 
with a recursion depth 1 and very low resolution 
(approx. 32x32 pixels). We also intend to move our 
raytracing implementation from the cluster environment 
to a graphic card with GPGPU functionality. 
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